Smarandache Curves of Spacelike Anti-Salkowski Curve with a Spacelike Principal Normal According to Frenet Frame
نویسندگان
چکیده
منابع مشابه
Spacelike Salkowski and anti-Salkowski Curves With a Spacelike Principal Normal in Minkowski 3-Space
A century ago, Salkowski [9] introduced a family of curves with constant curvature but non-constant torsion (Salkowski curves) and a family of curves with constant torsion but nonconstant curvature (anti-Salkowski curves). In this paper, we adapt definition of such curves to spacelike curves in Minkowski 3-space. Thereafter, we introduce an explicit parametrization of a spacelike Salkowski curv...
متن کاملASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³
The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...
متن کاملSpacelike intersection curve of three spacelike hypersurfaces in E 41
In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E 1 .
متن کاملSpacelike and Timelike Normal Curves in Minkowski Space-time
We define normal curves in Minkowski space-time E4 1 . In particular, we characterize the spacelike normal curves in E4 1 whose Frenet frame contains only non-null vector fields, as well as the timelike normal curves in E4 1 , in terms of their curvature functions. Moreover, we obtain an explicit equation of such normal curves with constant curvatures.
متن کاملContributions to differential geometry of spacelike curves in Lorentzian plane L2
In this work, first the differential equation characterizing position vector of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the special curves mentioned above are studied in Lorentzian plane $mathbb{L}%^{2}.$ Finally some characterizations of these special curves are given in $mathbb{L}^{2}.$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi
سال: 2020
ISSN: 2146-538X
DOI: 10.17714/gumusfenbil.621363